Magnetic and Transport Properties of CeVO₃

Hoan C. Nguyen and John B. Goodenough

Center for Materials Science and Engineering, ETC 9.102, The University of Texas at Austin, Austin, Texas 78712-1063

Received December 1, 1994; in revised form March 8, 1995; accepted March 13, 1995

Magnetic data are presented that indicate the VO₃ array of the perovskite CeVO₃ exhibits the same anomalous properties as in LaVO₃, including (1) a first-order magnetostrictive distortion below a $T_t < T_N$, (2) a canted-spin ferromagnetism below T_N , (3) a reversal of the direction of the vanadium atomic moments on traversing T_t , and (4) suppression of T_t in an isostructural metastable phase prepared under hydrostatic pressure. The V-Ce exchange field operating at the Ce^{3+} : $4f^1$ configurations below T_N does not change sign on traversing T_t . The Ce-atom magnetization reduces the field for nucleation of irreversible magnetization processes; both La_{0.5}Ce_{0.5}VO₃ and CeVO₃ exhibit M-H hysteresis loops characteristic of hard ferromagnets, whereas the magnetization of LaVO₃ remains reversible in fields $H = \pm 50$ kOe. For $x \ge 0.25$, substitution of Sr for Ce in Ce1-rSr,VO3 does not create smallpolaron V⁴⁺ ions, but delocalized V-3d states and an intermediate Ce^{4+}/Ce^{3+} valence at the Ce atoms. Strong correlations among the itinerant V- π^* electrons of stoichiometric, metallic SrVO₃ reintroduce long-range magnetic order at low temperatures. © 1995 Academic Press, Inc.

INTRODUCTION

The orthorhombic (space group *Pbnm*) perovskite LaVO₃ undergoes a first-order decrease of its axial ratio $c/\sqrt{2}a$ on cooling through a transition temperature $T_t \approx$ 138 K < $T_N \approx$ 142 K (1, 2); the magnetic order below T_t has a canted-spin configuration $C_y F_x$ with a ferromagnetic component along the **a** axis of the orthorhombic cell (1). A later refinement shows a distortion to monoclinic $P2_1/a$ symmetry below T_t , in which the ferromagnetic component is along the **b** axis of the monoclinic cell with a rhombohedral component to the distortion of the V³⁺ octahedra (3, 4). The notation $C_y F_x$ for the magnetic order has been defined by Bertaut (5).

If polycrystalline LaVO₃ is cooled or quenched from 300 to 4 K in zero magnetic field (ZFC or ZFQ case), the magnetic susceptibility measured in 1 kOe looks like that of a Néel antiferromagnet; cooling in zero field leaves the compound demagnetized, and only reversible magnetization processes occur in an applied field of 1 kOe. However, cooling or quenching in an applied field of 1 kOe from 300 to 4 K (FC-1 kOe or FQ-1 kOe case) gives rise to an "anomalous diamagnetism" below T_t if the measure-

ments are made on heating in the same applied field as on cooling (6, 7). We have shown experimentally that this anomalous diamagnetism reflects an orientation of the canted-spin ferromagnetism in opposition to the magnetizing field on cooling through the first-order transition temperature T_t (6, 7). We have argued (6, 7) that the firstorder transition is due to a Jahn-Teller distortion that enhances the orbital angular momentum discontinuously by an amount ΔL , thereby inducing a persistent atomic current that opposes the magnetizing field and consequently reversing each total V³⁺-ion atomic moment μ_V due to intraatomic spin-orbit coupling. In support of this argument, we showed that suppression of the first-order magnetostrictive distortion at T_t eliminates the anomalous diamagnetism.

The magnetostrictive distoriton is suppressed by applying pressure on the $(VO_3)^{3-}$ array; a hydrostatic pressure $P \ge 8$ kbar stabilizes a metastable isostructural high-pressure LaVO₃ phase and chemical pressure stabilizes an isostructural YVO₃ phase that does not form a solid solution with ambient-pressure LaVO₃ [7]. With the exception of Ce, substitution of smaller rare-earth atoms for La suppresses the first-order magnetostrictive distortion at T_1 . CeVO₃ retains a magnetostrictive distortion like that found in LaVO₃ with $T_{\rm t} \approx 124$ K $< T_{\rm N} \approx 136$ K; it also has the same $C_v F_x$ magnetic structure (referred to as orthorhombic *Pbnm* symmetry) as LaVO₃ below T_1 (1). Therefore, we have investigated $CeVO_3$ to determine whether there is evidence in this compound also for an anomalous diamagnetism of the VO₃ array after or with a FC-1 kOe. In addition, we explore the system $Ce_{1-r}Sr_rVO_3$. We show that a semiconductor-metal transition occurs at the Sr-atom percolation limit, as in $La_{1-r}Sr_rO_3$, and the Ce³⁺ valence of CeVO₃ is transformed to an intermediate-valence state on oxidation of the $(VO_3)^{3-}$ array; the $VO_3-\pi^*$ band apparently overlaps the Ce^{4+}/Ce^{3+} couple in the metallic phase.

EXPERIMENTAL PROCEDURES

Polycrystalline $Ce_{1-y}La_yVO_{4+z}$ and $Sr_2V_2O_7$ were first prepared by standard solid-state reaction in air at 850°C from stoichiometric mixtures of CeO_2 , La_2O_3 , $SrCO_3$, and V₂O₅. The powdered Sr₂V₂O₇ and Ce_{1-y}La_yVO_{4+z} were fired in flowing hydrogen at 800 and 1100°C, respectively, to reduce them to SrVO₃ and Ce_{1-y}La_yVO₃. Finally, polycrystalline Ce_{1-x}Sr_xVO₃ samples were prepared by solid-state reaction in ultrapure argon at 1400°C from a mixture of CeVO₃ and SrVO₃ with several intermittent regrindings and refirings. Samples that were single-phase to X-ray powder diffraction, taken with a Philips diffractometer and CuK\alpha radiation, were pressed and sintered at 1400°C in ultrapure argon. The X-ray diffraction peak positions were calibrated against Si as an internal standard, and the lattice parameters were obtained with a least-squares fitting procedure. The oxygen content of selected samples was determined by thermogravimetric analysis on oxidation to V₂O₅, CeO₂, and La₂O₃.

X-ray photoelectron spectroscopy (XPS) was used to monitor the evolution with x of the valence of the vanadium and cerium ions in the system $Ce_{1-x}Sr_xVO_3$. Data were obtained at room temperature with a VG ESCALAB MARK I spectrometer having a base pressure less than 10^{-7} Torr and employing monoenergetic MgK α X-ray radiation (1253.6 eV). The X-ray anode was operated at 330 W. The photoelectrons were detected with an electron multiplier tube and an EA-11 hemispherical analyzer operated at a constant pass energy of 50 eV. The surface of the sample was mounted normal to the axis of the analyzer entrance aperture. The depth of sample probed in such an oxide is under 25 Å.

Magnetic susceptibility was measured between 5 and 300 K with a SQUID magnetometer in applied fields $-50 \le H \le 50$ kOc. The resistance of polycrystalline samples was measured with a four-probe technique; it was corrected for a thermoelectric contribution by subtracting the off-current background. The thermopower was measured by the dc method with an experimental system described elsewhere (8); a temperature difference $\Delta T =$ 5 K across the sample was used for each Seebeck measurement.

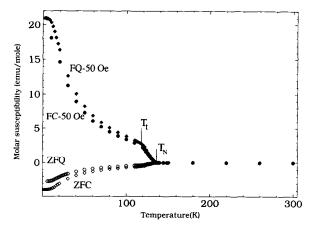


FIG. 1. Temperature dependence of the molar susceptibility of $CeVO_3$ taken in 50 Oe after ZFC or ZFQ and FC-50 Oe or FQ-50 Oe from room temperature to 4 K.

EXPERIMENTAL RESULTS

1. Structure. The perovskite systems $Ce_{1-y}La_yVO_3$ and $Ce_{1-x}Sr_xVO_3$ remain orthorhombic, space group *Pbnm*, at room temperature and appear to form complete solid solutions over the ranges $0 \le y \le 0.5$ and $0 \le x \le$ 1.0, respectively. The room-temperature volume of the system $Ce_{1-x}Sr_xVO_3$ decreases with x over the compositional range $0.25 \le x \le 0.75$, see Table 1; the volume change does not obey Végard's law, and SrVO₃ expands discontinuously as the oxygen content is increased from 2.9 to 3.0 per formula unit.

2. $CeVO_3$. Figure 1 shows the magnetic susceptibility of CeVO₃ taken in 50 Oe on heating from 4 to 300 K after a FC-50 Oe and a FQ-50 Oe as well as a ZFC and a ZFQ. Both T_N and T_t are evident, particularly in the FC and FQ curves.

After the ZFC and ZFQ treatments, the sample was not fully demagnetized; it had a net residual magnetization

 TABLE 1

 Room Temperature Lattice Parameter, Curie Constant, Neél Temperature, Magnetostrictive Transition Temperature and Curie

 Paramagnetic Temperature Θ_p of $Ce_{1-y}La_yVO_3$ and $Ce_{1-x}Sr_xVO_3$

Samples	a (Å)	b (Å)	с (Å)	V (Å) ³	Θ _p (-K)	C _M (emu/Kmole)	T _N (K)	T _t (K)
LaVO ₃	5.547	5.546	7.842	241.23	670	1.60	142	138
$Ce_{0.5}La_{0.5}VO_3$	5.531	5.546	7.822	239.95	257	1.56	135	124
CeVO ₃	5.519	5.544	7.805	238.11	158	1.74	125	124
$Ce_{0.75}Sr_{0.25}VO_3$	5.514	5.560	7.794	238.94	219	1.38		
$Ce_{0.50}Sr_{0.50}VO_3$	5.437	5.649	7.775	238.79	222	0.86		
$Ce_{0.25}Sr_{0.75}VO_3$	5.519	5.550	7.779	238.26	249	0.46		
SrVO ₁	5.367	6.156	7.701	254.40	non-Curie	-Weiss		
SrVO _{2.9} (cubic)	3.842			Pauli paramagnetic				

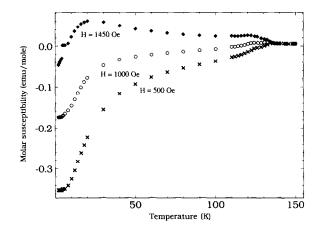


FIG. 2. Temperature dependence of the molar susceptibility of CeVO₃ measured in H = 500, 1000, or 1450 Oe after ZFC from room temperature to 4 K.

in four out of five experiments performed. The measuring field used for Fig. 1 was applied in opposition to the residual magnetization, which was greater after a ZFC than a ZFQ treatment.

The FC and FQ measurements of Fig. 1 were made with the magnetic field H = 50 Oe applied in the same direction as during cooling. Below $T_{\rm N} \approx 136$ K, the V³⁺ ions have the same canted-spin arrangement as in LaVO₃ below a $T_{\rm N} \approx 142$ K, and the $4f^1$ configuration at a Ce³⁺ ion experiences an exchange field that is stronger than the applied field. The V-Ce exchange field enhances the contribution to the magnetization coming from the Ceatom array. In the interval $T_{\rm t} \approx 124$ K $< T < T_{\rm N} \approx 136$ K, the contributions from both the V^{3+} -ion and Ce^{3+} -ion arrays appear to add to the total magnetization M oriented in the direction of **H**. The slope $d\chi_m/dT$ changes abruptly at T_t ; this change may reflect an enhanced magnetocrystalline anisotropy below T_t , but it could also signal a reversal of the magnetization of the VO₃ array as occurred below the T_t of LaVO₃ in a FC experiment. Evidently any reversal in the sign of the V^{3+} -ion contribution to the magnetization does not change the sign of the Ce-atom contribution. Below 40 K, the V-Ce atom interactions clearly enhance the Ce-atom magnetic ordering and hence their contribution to the magnetization as temperature decreases.

Figure 2 shows measurements taken on a ZFC sample in H = 500, 1000, and 1450 Oe applied in a direction opposite to the residual magnetization at 4 K. In this case also, the slope $d\chi_m/dT$ changes abruptly at T_t as in the FC and FQ experiments. The net magnetization exhibits an increasing change in the direction of **H** with increasing field strength and temperature, particularly below 20 K. At 20 K, a critical field for the reversal of the magnetization is $H \approx 1.2$ kOe.

Figure 3 shows an abrupt change in the magnetic sus-

ceptibility of a ZFC sample at a spin-reorientation temperature $T_s \approx 4$ K; the magnetic transition temperature does not change with increasing strength of the measuring field. This transition probably reflects a spin reorientation of the Ce-atom array.

The evolution with temperature of $\chi_m(T)$ for different measuring fields H = 50, 100, 150, 350, 400, 1000, 50,000Oe after a ZFQ, Fig. 4, is similar to that after a ZFC treatment. With lower measuring fields, the change in $d\chi_m/dT$ at T_t is particularly marked; it even changes sign, which supports the hypothesis that the sign of the magnetization of the VO₃ array is changing without a change in sign of the contribution from the Ce-atom array. At 10 K, the net magnetization reverses sign in a field $H \approx$ 350 Oe.

Figure 5 shows a $\chi_m(T)$ curve taken in an H = 1 kOe after a ZFQ at 80 K; the twin maxima occur at T_t and T_N .

In order to test whether the magnetization M exhibits an M-H hysteresis loop in CeVO₃, in contrast to the observation for $H \le 50$ kOe of almost all reversible magnetization processes in $LaVO_3$, we measured M versus H at 20 K after a FC-1 kOe to 20 K for CeVO₃, Ce_{0.5}La_{0.5}VO₃ and LaVO₃. The results for an excursion $-50 \le H \le 50$ kOe are displayed in Fig. 6. As can be seen, the magnetization processes for the VO₃ array of LaVO₃ are completely reversible; there is no opening of the curve characteristic of magnetic hysteresis, but an M < 0 is found for H < 3kOe. With H < 3 kOe the VO₃ array has a magnetization opposed to the applied field, and the individual atomic moments $\mu_{\rm V}$ are strongly held to their zero-field orientations by a giant magnetocrystalline anisotropy, a consequence of the magnetostrictive Jahn-Teller distortion below T₁. In contrast, CeVO₃ and Ce_{0.5}La_{0.5}VO₃ exhibit hysteresis loops typical of a hard ferromagnet with a saturation magnetization that increases with the concentration of Ce atoms.

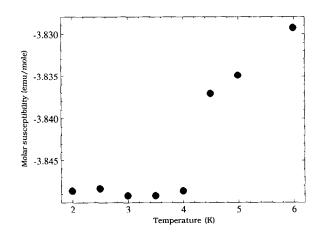


FIG. 3. Temperature dependence of the molar susceptibility for CeVO₃ measured in H = 50 Oe between 2 and 6 K after ZFC from room temperature to 2 K.

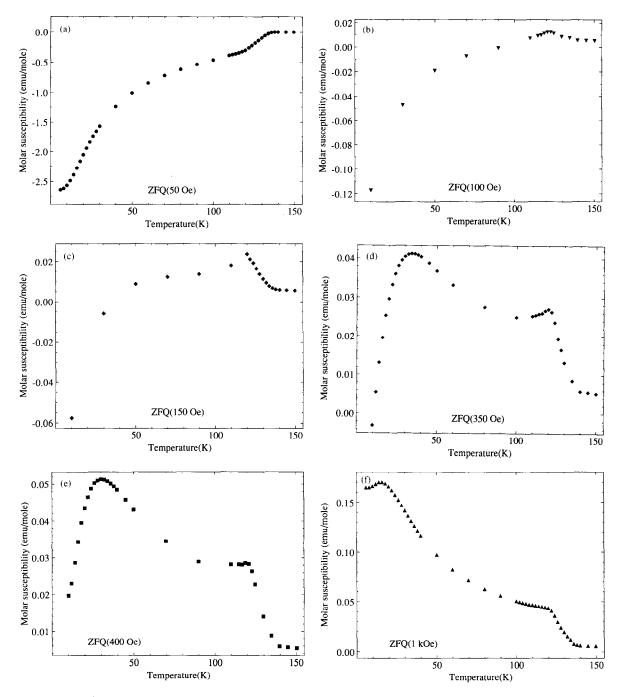
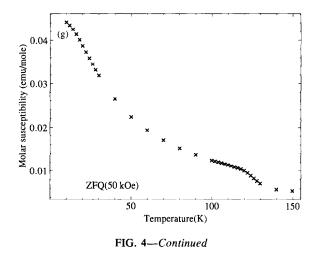



FIG. 4. Temperature dependence of the molar susceptibility of CeVO₃ measured in H = 50, 100, 150, 350, 400, 1000, and 50,000 Oe after ZFQ from room temperature to 4 K.

Figure 7 shows the evolution with temperature of the M(H) hysteresis loops for a sample FC-1 kOe and FC-50 kOe to the measuring temperature at 20 K. The evolution with temperature of the M-H hysteresis loop is typical of a hard ferromagnet, as can be seen from the evolution of the coercivity and remanence plotted in Fig. 8.

As for $LaVO_3$, preparation of a sample of $CeVO_3$ at 30

kbar with pressure release at room temperature results in an isostructural high-pressure CeVO₃ that is metastable at room temperature. Although the unit-cell volume does not change significantly, differential thermal analysis revealed a conversion back to the atmospheric-pressure phase occurring below 400°C as in high-pressure LaVO₃. Figure 9a compares the $\chi_m(T)$ curves for the two phases

taken in 1 kOe after a FC-1 kOe treatment. The highpressure phase of LaVO₃ is antiferromagnetic with little change in T_N , but without weak ferromagnetism and without a magnetostrictive distortion. The high-pressure CeVO₃ has a smaller $\chi_m(T)$ below T_N than the atmospheric-pressure phase, which indicates that the VO₃ array is behaving as it does in high-pressure LaVO₃ where there is no anomalous diamagnetism. Stabilization of a metastable high-pressure LnVO₃ phase was not found for smaller lanthanide ions Ln³⁺; comparison of $\chi_m(T)$ obtained in 1 kOe after a FC-1 kOe treatment for PrVO₃ and CeVO₃ shows, Fig. 9b, no sharp break in $d\chi_m/dT$ at T_1 in PrVO₃.

3. $Ce_{1-x}Sr_xVO_3$. Comparison of the system Ce_{1-x} Sr_xVO_3 with $La_{1-x}Sr_xVO_3$ is useful. Mahajan *et al.* (9) have monitored the evolution with x of the room-temperature structure as well as the magnetization M(T) and resistance R(T) behavior of the system $La_{1-x}Sr_xVO_3$. Their data showed a linear decrease with x of the volume of the

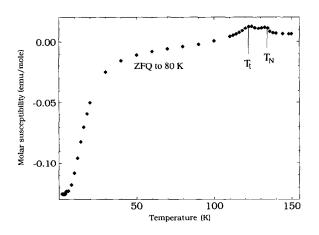


FIG. 5. Temperature dependence of the molar susceptibility of $CeVO_3$ measured in 1000 Oe after ZFQ from room temperature to 80 K.

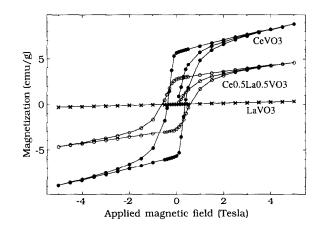


FIG. 6. M(H) curves of Ce_{1-y}La_yVO₃ taken at 20 K after ZFC from room temperature to 20 K.

orthorhombic cell, the smaller size of a V^{4+} ion versus a V^{3+} ion outweighing the larger size of a Sr^{2+} ion versus a La^{3+} ion. Their data also indicated that, for x > 0.3, the conduction electrons occupy a strongly exchangeenhanced, narrow d band; they found no evidence from NMR data of either antiferromagnetic spin fluctuations or superconductivity in the metallic phase.

Figure 10 shows the evolution of the resistance R(T) with x for the system $Ce_{1-x}Sr_xVO_3$. Like $LaVO_3$, $CeVO_3$ is an insulator. At x = 0.25, the extrinsic conduction exhibits a small activation energy; a transition to metallic behavior occurs in the interval 0.25 < x < 0.5 as in the $La_{1-x}Sr_xVO_3$ system. However, at x = 0.5 the $R(T) \sim T$ behavior is characteristic of a narrow d band with strong electron-phonon interactions; it is only at $x \ge 0.75$ that the R(T) curve has the T^2 dependence typical of a Fermi liquid. A similar evolution was found (9) in the system $La_{1-x}Sr_xVO_3$.

The Seebeck data of Fig. 11 show evidence of a gradual transition from two-carrier to single-carrier conduction with increasing x.

The inverse magnetic susceptibility for $0.25 \le x \le 0.75$, see Fig. 12a, exhibits a Curie–Weiss law at high temperatures, no evidence of a magnetic-ordering temperature, and a low-temperature dependence typical of an intermediate-valence system (10). The system $\text{La}_{1-x}\text{Sr}_x\text{VO}_3$ exhibits a temperature-independent, Stoner-enhanced Pauli paramagnetism in the range $0.2 \le x \le 0.9$, the enhancement factor decreasing with increasing x (9). On the other hand, the end member SrVO₃ exhibits a higher susceptibility if FC-1 kOe than if ZFC, particularly below 190 K, see Fig. 12b.

After subtracting the monochromatic O-1s contribution, the room-temperature XPS data, Fig. 13, show no evidence of two valence states on either the V-atom or Ce-atom arrays, but rather a continuous shifting of the

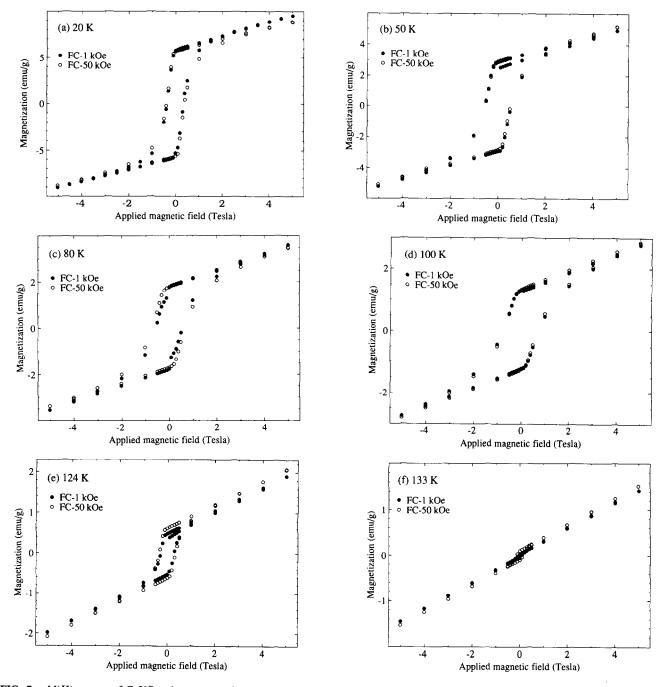


FIG. 7. M(H) curves of CeVO₃ taken at $T_a = 20, 50, 80, 100, 124$, and 133 K after FC-1 kOe and FC-50 kOe from room temperature to T_a (T_a refers to temperature at which the applied field is varied).

core-electron binding energies to lower values with increasing x, see Table 2.

DISCUSSION

1. $CeVO_3$. The magnetization **M** of CeVO₃ contains two components, one from the Ce-atom array, one from the V-atom array:

$$\mathbf{M} = \mathbf{M}_{\mathrm{Ce}} + \mathbf{M}_{\mathrm{V}}.$$
 [1]

Like LaVO₃, the orthorhombic perovskite CeVO₃ undergoes a first-order contraction of the $c/\sqrt{2}a$ ratio on cooling through the magnetostrictive transition temperature $T_t < T_N$. The magnetostrictive distortion arises from a cooperative Jahn-Teller distortion that removes the threefold orbital degeneracy of the octahedral-site ${}^3T_{1g}$

TABLE 2Core-Binding Energies (BE) of Ce-3d, V-2p, and O-1s forCe1-xSrxVO3 (All Data in eV)

	Ce-3d		V-2p		O-1s 1s
Sample	$3d_{5/2}$	$3d_{3/2}$	$2p_{3/2}$	$2p_{1/2}$	
CeVO ₃	889.8	908.3	520.7	528.5	534.0
Ce _{0.75} Sr _{0.25} VO ₃	889.3	908.0	520.3	528.0	533.7
$Ce_{0.50}Sr_{0.50}VO_3$	889.0	907.0	520.0	527.5	533.2
$Ce_{0.50}Ca_{0.50}VO_{3}$	889.2	907.5	520.1	527.5	533.2
$Ce_{0.25}Sr_{0.75}VO_3$	887.3	905.9	518.3	525.5	531.5
$Ce_2O_3^{a}$	885.3	903.8			530
CeO ₂ ^a	882.1	900.6			528
V ^b			512.4	519.9	
V ₂ O ₃ ^b			515.7	523.3	530.1
VO2 ^b			515.9	523.3	529.7

^a From (18-21).

^b From (21, 22).

configuration at the V³⁺ ions, but with a sign that enhances the orbital angular momentum and allows a strong spinorbit coupling to remove the remaining orbital degeneracy. Such a distortion can be cooperative only below a long-range magnetic-ordering temperature, which is why we find $T_t < T_N$. The cooperative distortion introduces a giant magnetocrystalline anisotropy that would hold the orientation of an individual vanadium moment μ_V to the local principal axis of its distorted octahedral site, which is why the magnetization of the canted-spin ferromagnet LaVO₃ only changes reversibly in field strengths $H \le 50$ kOe. Moreover, a first-order transition at T_t introduces a discontinuous change in the orbital angular momentum; we have postulated that this discontinuous change is responsible for a reversal in the sign of M_V in LaVO₃.

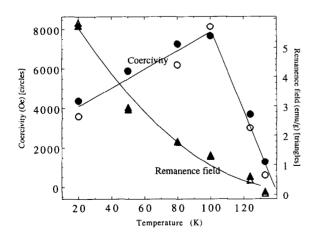


FIG. 8. Coercivity (circles) and remanence (triangles) of M(H) curves for CeVO₃ after Fig. 7 with FC-1 kOe (open data points) and FC-50 kOe (closed data points). Solid lines are drawn as guides to the eye.

Since a similar crystallographic change is observed at T_t in CeVO₃, we can expect the VO₃ array in this compound to exhibit properties similar to those of the VO₃ array in LaVO₃. The magnetic data of Figs. 1 and 2 provide indirect evidence that \mathbf{M}_V reverses sign on heating/cooling through T_t just as in LaVO₃.

The observation that \mathbf{M}_{Ce} does not change sign when \mathbf{M}_{V} changes sign would indicate that the exchange field operative at the Ce: $4f^{1}$ configuration due to the Ce–V interactions is predominantly antisymmetric and oriented perpendicular to the vanadium-atom moments,

$$\mathbf{H}_{\mathrm{Ce-V}}^{\mathrm{ex}} \sim \mu_{\mathrm{V}i} \times \mu_{\mathrm{V}j}, \qquad [2]$$

where μ_{Vi} and μ_{Vj} belong to the two different vanadium subarrays of the canted-spin configuration. A reversal of the sign of the μ_V would not change the sign of the exchange field of Eq. [2]. An orientation of the rare-earth atomic moments perpendicular to the transition-metal moment in $LnMO_3$ perovskites (Ln = rare earth, M = transition metal) is common (11).

The observation of a symmetric M-H hysteresis loop, Fig. 6, implies an irreversible growth of favorably oriented magnetic domains in a field $H > H_N$, where the field H_N at the knee of the hysteresis loop is the field required for the nucleation and/or irreversible growth of favorably oriented magnetic domains. The coupling of **H** to \mathbf{M}_{Ce} and of \mathbf{M}_{Ce} to \mathbf{M}_V is apparently strong enough to force an irreversible domain-wall motion in CeVO₃, whereas a field H = 50 kOe is not large enough to induce domain-wall nucleation and/or growth in LaVO₃. A larger saturation magnetization M_s in CeVO₃ would lower the field H_N for nucleation of domains of reverse magnetization (12, 13),

$$H_{\rm N} = \frac{2K_{\rm l}}{M_{\rm s}} \alpha_{\rm K} \alpha_{\psi} - N_{\rm eff} M_{\rm s}, \qquad [3]$$

where K_1 is an effective magnetocrystaline anisotropy constant, N_{eff} is an effective demagnetization factor, and $\alpha_K \alpha_{\psi}$ is an extrinsic parameter.

We can obtain an estimate of the variation of the effective K_1 from the hysteresis loops of Fig. 6. For a hard magnet, the initial magnetization curve is described by the empirical formula (14-17)

$$M = M_{\rm s} \left(1 - \frac{a}{H} - \frac{b}{H^2} \right) + \chi_0 H, \qquad [4]$$

where $\chi_0 = (dM/dH)_{rev}$ is the contribution arising from reversible rotations of the μ_V against their local crystalline-anisotropy and exchange fields. A value for χ_0 is obtained from the slope of the M(H) curve found on decreas-

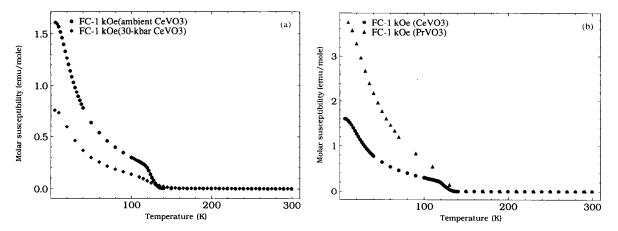
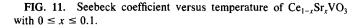



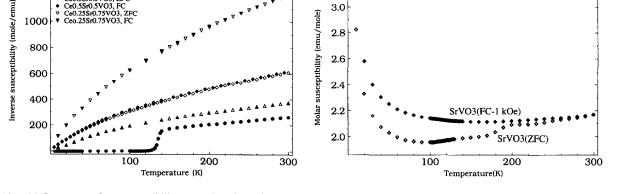
FIG. 9. Temperature dependence of the molar susceptibility after a FC-1 kOe of (a) $CeVO_3$ with two pressure syntheses and (b) $CeVO_3$ and $PrVO_3$.

FIG. 10. (a) Logarithm of resistance versus inverse temperature of $CeVO_3$ and $Ce_{0.75}Sr_{0.25}VO_3$. Resistance versus temperature of (b) $Ce_{0.50}Sr_{0.50}VO_3$ and (c) $Ce_{0.25}Sr_{0.75}VO_3$ and $SrVO_3$.

ing the applied field from its maximum value to H_N . Recasting [4] as

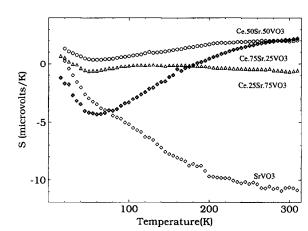
$$(M_{s} + \chi_{0}H - M)H^{2} = aH + b$$
 [5]

and subtracting the term $\chi_0 H$ gives a linear plot from which the parameters *a* and *b* can be extracted. The constant *a* is an extrinsic parameter that should vanish in a perfect crystal; for a cubic ferromagnet a $b = 0.0762 (K_1/M_s)^2$ has been found. If M_s is taken as the value of *M* at H = 50 kOc, the values of *a*, *b*, K_1 , and χ_0 that result are given in Table 3. Chemical inhomogeneities associated with the distribution of Ce and La in Ce_{0.5}La_{0.5}VO₃ may be responsible for the large value of *a* obtained for this material. Such inhomogeneities could also account for a rounding of the knee at H_N since their presence would impede the motion of domain walls that are nucleated. On going from Ce_{0.5}La_{0.5}VO₃ to CeVO₃, the measured M_s


1200

increases by about a factor 2, as would be expected if the Ce-atom moments μ_{Ce} were the dominant contributors to M_s ; the parameters b and χ_0 increase by a factor 1.7, which implies an increase in the effective anisotropy constant of about a factor 2.6. The dramatic increase in M_s with Ce doping can therefore account for the drop in H_N on going from LaVO₃ to Ce_{0.5}La_{0.5}VO₃ according to Eq. [3].

Independent evidence that the magnetism of the VO₃ array of CeVO₃ behaves like that of LaVO₃ comes from the existence of a metastable high-pressure $CeVO_3$ phase. In both $LaVO_3$ and $CeVO_3$ there is a cooperative Jahn-Teller distortion that enhances the orbital angular momentum on cooling through a transition temperature $T_{\rm t} < T_{\rm N}$, and in both we find stabilization of a metastable high-pressure phase in which the cooperative Jahn-Teller distortion is suppressed. In the $LnVO_3$ perovskites with smaller Ln^{3+} ions, there is no metastable high-pressure phase and no magnetostrictive distortion below a T_t . We have interpreted this correlation to be due to a first-order delocalization of the V-3d electron with increasing pressure, hydrostatic for Ln = La and Ce or chemical for smaller Ln^{3+} ions. Metastable high-pressure CeVO₃ exhibits no anomalous behavior in its $\chi_m(T)$ curve, which remains smaller than that of stable CeVO₃ below T_N . A weak ferromagnetism of the VO_3 array having an M_V in the direction of \mathbf{M}_{Ce} and **H** in the interval $T_{t} < T < T_{N}$ enhances the volume of material in stable CeVO₃ having its total magnetization aligned favorably with respect to an H = 1 kOe at all temperature $T < T_N$; in metastable $CeVO_3$ where the VO₃ array has no weak ferromagnetism. the volume of material having its magnetization aligned parallel to **H** below T_N is relatively small.


Reversal of the sign of the weak ferromagnetism of the VO₃ array on cooling through T_t in stable CeVO₃, though enhancing a break in $(d\chi_m/dT)$ at T_t , does not reverse the V-Ce exchange coupling operating on M_{Ce} below T_N , so

(b)

x10⁻⁴

FIG. 12. (a) Inverse molar susceptibility as a function of temperature for $Ce_{1-x}Sr_xVO_3$ with $0 \le x \le 1$ and (b) temperature-dependent susceptibility of SrVO₃ measured in 1 kOe after ZFC and FC-1 kOe from room temperature to 4 K.

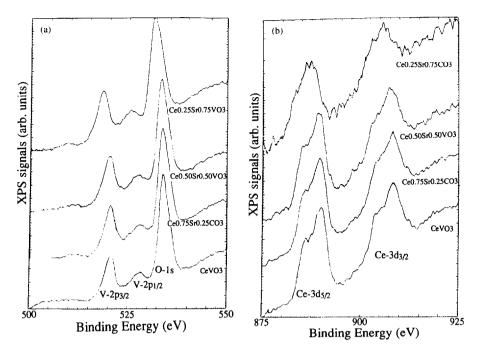


FIG. 13. X-ray photoelectron spectra as a function of the core binding energies for (a) V-2p and O-1s states and (b) Ce-3d states for $Ce_{1-x}Sr_xVO_3$ with $0 \le x \le 1$.

the $\chi_m(T)$ measured in 1 kOe remains higher in stable CeVO₃ than in metastable high-pressure CeVO₃. The enhanced ordering of the μ_{Ce} below 40 K in both samples indicates that the V-Ce exchange coupling is not changed significantly by the electronic transition induced by high pressure.

One of the factors that makes vanadium oxide chemistry so rich is its tendency to exhibit first-order transitions between more localized and more delocalized V-3d electrons. This tendency is illustrated not only by the stabilization of metastable high-pressure phases in LaVO₃ and CeVO₃, but also by the insulator-metal transitions found in the $Ln_{1-x}M_xVO_3$ perovskites, with M = an alkaline earth.

2. $Ce_{1-x}Sr_xVO_3$. The volume of the unit cell decreases nonlinearly with increasing x over the compositional range $0.25 \le x \le 0.75$ in the system $Ce_{1-x}Sr_xVO_3$, Table 1; it decreases linearly with x in $La_{1-x}Sr_xVO_3$ for $0 \le x < 1$ (9). This difference already indicates an oxidation of the Ce-atom array in the system $Ce_{1-x}Sr_xVO_3$.

We interpret the evolution of the transport and magnetic properties of the system $Ce_{1-x}Sr_xVO_3$ with the schematic energy diagram of Fig. 14. In the insulator CeVO₃, Fig. 14a, the Fermi energy E_F lies above the V⁴⁺/V³⁺ : $3d^2$ and Ce^{4+}/Ce^{3+} : $4f^1$ redox couples in an energy gap separating the empty V³⁺/V²⁺ : $3d^3$ couple from the localized occupied states responsible for the atomic moments; these redox couples lie in the energy gap between the valence bands of primarily O-2p parentage and the conduction bands of primarily V-4s and Ce-5d parentage.

The substitution of Sr for Ce lowers $E_{\rm F}$ into the Ce⁴⁺/ Ce^{3+} and V^{4+}/V^{3+} couples; the holes so introduced into these couples may be either trapped as small polarons within the Ce⁴⁺/Ce³⁺ couple or form molecular-orbital (MO) states at the eight near neighbors of a Sr atom, Fig. 14b. The insulator-metal transition with increasing x occurs where the percolation limit is reached for transition to a narrow π^* band via vanadium atoms near neighbor to a Sr^{2+} ion. Formation of a narrow VO_3 - π^* band at vanadium atoms near neighbor to a Sr²⁺ ion is consistent with stronger V-O bonding at higher-valence vanadium, which would stabilize the more delocalized V-3d states found in metastable, high-pressure CeVO₃. With this model, the system would exhibit variable-range hopping and/or small polarn motion in compositions 0 < x < 0.25with a transfer of spectral weight from the V^{4+}/V^{3+} couple to the gap in excess of one state per Sr atom. In the range $0.25 < x \le 0.50$, where x exceeds the Sr-atom percolation threshold, a partially occupied π^* impurity band is formed in which $E_{\rm F}$ is pinned at the Ce⁴⁺/Ce³⁺ couple of the remaining Ce atoms. This situation results in a classical intermediate-valence state at the Ce atoms, valence fluctuations between the Ce^{4+}/Ce^{3+} couple and the MO or band states of the partially filled lower Hubbard band being associated with a strong hybridization of Ce-4f and near-neighbor V-3d states. Already by x = 0.5, the hybrid-

Samples	H _c (kOe)	B _r (emu/g)	χ_0 (10 ⁻⁵ emu/g·Oe)	a (Oe)	b (10 ⁶ Oe ²)	K_1 (10 ⁴ erg/ccm)
LaVO ₁	≈0.0	≈0.0	0.06			
$Ce_{0.5}La_{0.5}VO_3$	6.34	2.76	0.36	1938	1.89	1.49
CeVO ₃	3.98	5.72	0.61	651	3.26	3.85

TABLE 3 Coercive Field H_c , Remanence Field B_r , the Differential Susceptibility of Reversible Rotation of Hysteresis $y_0 = (dM/dH)_{cm}$, and Constants *a*, *b*, *K*, of the Ce₁, La,VO₂ Measured at 20 K after ZFC

ization suppresses the localized character of the Ce-4f electrons at lowest temperatures and hence any magnetic order.

By x = 0.75, the less than half-filled V⁴⁺/V³⁺ "lower Hubbard band" dominates the Seebeck voltage at lowest temperatures, but hole conduction in the Ce⁴⁺/Ce³⁺ couple appears to contribute significantly at higher temperatures, Fig. 11.

In the absence of Ce atoms, stoichiometric SrVO₃ exhibits the transport properties of a typical metal; the V-O-V interactions are strong enough to create $(\frac{1}{6})$ -filled π^* bands. However, the π^* bands remain sufficiently narrow that the electrons stabilize an itinerant electron antiferromagnetic spin-density wave with a canted-spin ferromagnetism near the stoichiometric composition corresponding to all V⁴⁺ ions. The on-site electron correlations are most strongly manifest in a single-valent compound where the Hubbard model applies. Removal of

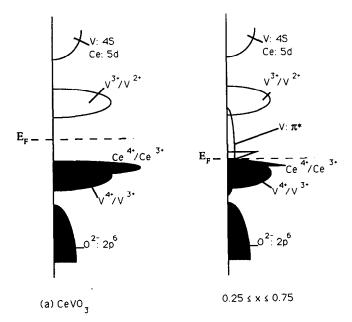


FIG. 14. Schematic density of states versus energy diagram for (a) CeVO₃ and (b) Ce_{1-x}Sr_xVO₃ with $0.25 \le x \le 0.75$. The V- π^* band is associated with V atoms having a Sr near neighbor.

oxygen induces a first-order phase change between weakly correlated electrons in the π^* band of SrVO_{2.9} and strongly correlated π^* electrons in SrVO₃.

The XPS data of Fig. 13 and Table 2 are consistent with a delocalization of the V-3*d* electrons on doping and a valence fluctuation at the Ce atoms that is fast relative to 10^{-5} sec.

CONCLUSIONS

The perovskite $CeVO_3$ has a VO_3 array that behaves like the VO₃ array of LaVO₃. In LaVO₃, long-range antiferromagnetic order with a canted-spin ferromagnetic component sets in at $T_{\rm N} \approx 142$ K; in CeVO₃ the same magnetic order of the VO₃ array sets in at $T_{\rm N} \approx 136$ K. Both compounds undergo a first-order magnetostrictive distortion at a $T_{\rm t} < T_{\rm N}$; we find $T_{\rm t} \approx 138$ K in LaVO₃ and 124 K in CeVO₃. The transition is due to a cooperative Jahn-Teller distortion that removes the orbital degeneracy of the localized V^{3+} : t^2e^0 configurations in a way that enhances the orbital angular momentum; the orbital angular momentum increases discontinuously on cooling through T_1 . In the presence of a strong intraatomic spinorbit coupling, such a cooperative transition is made possible by the long-range ordering of the V^{3+} -ion spins. Also, in both perovskites high-pressure synthesis stabilizes a metastable, isostructural phase below 250°C, in which the magnetostrictive distortion at T_{t} is suppressed. Suppression of the magnetostrictive, localized-electron Jahn-Teller distortion by pressure is attributed to a firstorder change in the extent of V–O 3d-2p covalent mixing and hence of the delocalization of the V-3d electrons. With smaller Ln³⁺ ions in the LnVO₃ perovskites, bondlength mismatch exerts a compressive stress on the VO₃ array that suppresses the cooperative Jahn-Teller magnetostrictive distortion.

The vanadium atomic moments μ_V have been shown to reverse their direction on cooling/heating through T_t in LaVO₃; we have presented indirect evidence in this paper that the vanadium moments μ_V also change direction in CeVO₃ on thermally traversing T_t , but without inverting the sign of the V-Ce exchange field at the Ce atoms. Inversion of the direction of each $\mu_{\rm V}$ on traversing $T_{\rm t}$ has been attributed to the discontinuous change in the orbital angular momentum, which induces a persistent atomic current in a direction to oppose an applied or exchange field at the vanadium atom. Retention of the sign of the V-Ce exchange field through $T_{\rm t}$ indicates that the interaction is antisymmetric with an exchange field at the Ce atoms of the form of Eq. [2].

The V-Ce interatomic exchange field is manifest in the magnetic susceptibility $\chi_m(T)$ by a sharp increase in the magnetization $\mathbf{M} = \chi_m \cdot \mathbf{H}$ on cooling through T_N in a constant applied field \mathbf{H} and also the opening of an M-H hysteresis loop below T_t that is not found in LaVO₃ in excursions of H to ± 50 kOe. A sharp change in $d\chi_m/dT$ at T_t is attributed to a reversal of the direction of each μ_V (as well as to a dramatic change in the magnetization. A rapid increase with decreasing temperature in the magnetization $M = \chi_m \cdot H$ below 40 K reflects an ordering of the Ce-atom moments; a reorientation of the Ce-atom moments seems to occur at a $T_s \approx 4$ K.

Three aspects of the system $Ce_{1-x}Sr_xVO_3$ are of inter-est. First, the substitution of Sr^{2+} for Ce^{3+} oxidizes both the cerium and vanadium atoms, which makes the evolution of the lattice parameters with x deviate strongly from Végard's law, as can bee seen from Table 1. Second, oxidation of the vanadium $x \ge 0.25$ does not result in small-polaron V^{4+} ions, but in a delocalization of the V-3d electrons as prefigured by a metastable high-pressure phase; at small x, delocalized molecular orbitals are created nonadiabatically at the cluster of 8 near-neighbor V atoms of an isolated Sr^{2+} ion, and at larger x, percolation allows creation of itinerant electron π^* band states. The transition from localized V^{3+} : t^2e^0 configurations to delocalized states transfers excess spectral weight into the energy gap between V^{4+}/V^{3+} and V^{3+}/V^{2+} couples, and hybridization of Ce-4f and V-3d states at $E_{\rm F}$ creates intermediate-valence fluctuations at the Ce atoms and suppresses the Ce atomic moments at low temperatures. Third, stoichiometric SrVO3 exhibits magnetic ordering at low temperatures; the strong on-site electron correlations inhibit charge transfer in the stoichiometric compound, stabilize itinerant-electron magnetism, and also increase the volume.

ACKNOWLEDGMENTS

The authors thank the NSF, the Robert A. Welch Foundation, Houston, Texas, and the Texas Advanced Research Program for support of this work.

REFERENCES

- 1. V. G. Zubkov, G. V. Brazuev, and G. P. Shveikin, Sov. Phys. Solid State 18, 1165 (1976).
- A. S. Borukhovich, G. V. Brazuev, and G. P. Shveikin, Sov. Phys. Solid State 15, 1467 (1974); 16, 181 (1974).
- P. Bordet, C. Chaillout, M. Marezio, Q. Huang, A. Santoro, S.-W. Cheong, H. Takagi, C. S. Oglesby, and B. Batlogg, J. Solid State Chem. 106, 253 (1993).
- Q. Huang, A. Santoro, P. Bordet, M. Marezio, S.-W. Cheong, and B. Batlogg, private communication, 1993.
- E. F. Bertaut, in "Magnetism: A Treatise on Modern Theory and Materials" (G. T. Rado and H. Suhl, Eds.), Chap. 4. Academic Press, New York, 1963.
- J. B. Goodenough and H. C. Nguyen, C. R. Acad. Sci., Paris, 319, 1285 (1994).
- 7. H. C. Nguyen and J. B. Goodenough, Phy. Rev. B 52, 335 (1995).
- 8. J. B. Goodenough and J. Zhou, Phys. Rev. B 47, 5275 (1993).
- A. V. Mahajan, D. C. Johnston, D. R. Torgeson, and F. Borsa, Phys. Rev. B 46, 10973 (1992).
- 10. P. de la Mora and J. B. Goodenough, J. Phys. C. 20, 3391 (1987).
- J. B. Goodenough and J. M. Longo, Eds., "Magnetic and Other Properties of Oxides and Related Compounds," p. 126, Landolt-Borenstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group 3, Vol. 4, Pt. A (K. H. Hellwege, Ed.). Springer-Verlag, Berlin/New York, 1970.
- R. Grossinger, in "Proceedings of the International Workshop 'Magnetism, Magnetic Materials and Their Applications'" (F. Leccabue and J. L. Sanchez, Eds.), Sect. 1, pp. 3-11. Llamzares, Havana, Cuba, May 21-29, 1991.
- H. Kronmuller, "Supermagnets, hard magnetic materials" (G. I. Long and F. Grandjera, Eds.), Chap. 19. Kluwer Academic, Dordrecht, 1991.
- 14. P. Weiss, J. Phys. 6, 667 (1907).
- S. Chikazumi, "Physics of Magnetism," Chaps. 11, 12. Krieger, Melbourne FL, 1978.
- 16. E. Czerlinsky, Ann Phys. 13, 80 (1932).
- 17. L. Néel, J. Phys. Radium 9, 184 (1948).
- T. Shishido, H. Iwasaki, N. Toyota, M. Tanaka, H. Horiwachi, S. Nojama, S. Nakagawa, and T. Inkuda, J. Alloy Comp. 209, L11 (1994).
- 19. E. Parazzo, Surf. Sci. 234, L 253 (1990).
- 20. J. W. Allen, J. Magn. Magn. Mater. 47, 48, 160 (1985).
- 21. C. A. Strydom and H. J. Strydom, Inorg. Chim. Acta 161, 7 (1989).
- 22. G. A. Sawatzky and D. Post, Phys. Rev. B 30, 1546 (1979).